![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
It is well known that the every letter $\alpha$ of an automatic sequence $a(n)$ has a logarithmic density -- and it can be decided when this logarithmic density is actually adensity. For example, the letters $0$ and $1$ of the Thue-Morse sequences $t(n)$ have both frequences $1/2$. The purpose of this talk is to present a corresponding result for subsequences of general automatic sequences along primes and squares. This is a far reaching of two breakthroughresults of Mauduit and Rivat from 2009 and 2010, where they solved two conjectures by Gelfond on the densities of $0$ and $1$ of $t(p_n)$ and $t(n^2)$ (where $p_n$ denotes thesequence of primes). More technically, one has to develop a method to transfer density results for primitive automatic sequences to logarithmic-density results for general automatic sequences. Then asan application one can deduce that the logarithmic densities of any automatic sequence along squares $(n^2){n\geq 0}$ and primes $(p_n)_{n\geq 1}$ exist and are computable. Furthermore, if densities exist then they are (usually) rational.