Isometric immersions and the waving of flags

De Stephen Preston

Apparaît dans la collection : 2022 - T3 - WS2 - Geometry, Topology and Statistics in Data Sciences

A physical flag can be modeled geometrically as an isometric immersion of a rectangle into space, with one edge fixed along the flagpole. Its motion, in the absence of gravity and wind, can be modeled as a geodesic in the space of all isometric immersions, where the Riemannian metric is inherited from the kinetic energy on the much larger space of all immersions. In this talk I will show how generically such an isometric immersion can be described completely by the curve describing the top or bottom edge, which gives a global version of a classical local result in differential geometry. Using this, I will show how to derive the geodesic equation, which turns out to be a highly nonlinear, nonlocal coupled system of two wave equations in one space variable, with tension determined by solving an ODE system. The new model has the potential to describe motion of cloth with much fewer variables than the traditional method of strongly constraining three functions of two space variables.

This is joint work with Martin Bauer and Jakob Moeller-Andersen.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T3.WS2.007
  • Citer cette vidéo Preston Stephen (14/10/2022). Isometric immersions and the waving of flags. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T3.WS2.007
  • URL


  • Martin Bauer, Jakob Møller-Andersen, Stephen C. Preston / Isometric Immersions and the Waving of Flags arXIv:1905.06378

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte doit être connecté à mathoverflow

Poser une question sur MathOverflow


  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis