![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
De Xinyi Yuan
Apparaît dans la collection : Conférences Paris Pékin Tokyo
The Hodge index theorem of Faltings and Hriljac asserts that the Neron-Tate height pairing on a projective curve over a number field is equal to a certain intersection pairing in the setting of Arakelov geometry. In the talk, I will present an extension of this result to adelic line bundles on higher dimensional varieties over finitely generated fields. Then I will talk about its relation to the non-archimedean Calabi-Yau theorem and its application to algebraic dynamics. This is a joint work with Shou-Wu Zhang.