00:00:00 / 00:00:00

High dimensional cohomology of SL_n(Z) and its principal congruence subgroups 1

De Peter Patzt

Group cohomology of arithmetic groups is ubiquitous in the study of arithmetic K-theory and algebraic number theory. Rationally, SL_n(Z) and its finite index subgroups don't have cohomology above dimension n choose 2. Using Borel-Serre duality, one has access to the high dimensions. Church, Farb, and Putman conjectured that the high dimensional cohomology of SL_n(Z) with trivial rational coefficients vanishes. In this lecture series, we will give an introduction to these notions, prove the aforementioned conjecture in codimensions 0 and 1. We will also study the top cohomology of principal congruence subgroups. In the final lecture, we summarize some further directions and open problems in the field.

Informations sur la vidéo

  • Date de captation 21/06/2022
  • Date de publication 03/12/2025
  • Institut Institut Fourier
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis