![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
De Kazuya Kato
Apparaît dans la collection : Conférences Paris Pékin Tokyo
We compare height functions for (1) points of an algebraic variety over a number field, (2) motives over a number field, (3) variations of Hodge structure with log degeneration on a projective smooth curve over the complex number field, (4) horizontal maps from the complex plane C to a toroidal partial compactification of the period domain. Usual Nevanlinna theory uses height functions for (5) holomorphic maps f from C to a compactification of an algebraic variety V and considers how often the values of f lie outside V. Vojta compares (1) and (5). In (4), V is replaced by a period domain. The comparisons of (1)--(4) provide many new questions to study.