![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
De Yujie Xu
Apparaît dans la collection : Automorphic forms, endoscopy and trace formulas / Formes automorphes, endoscopie et formule des traces
I will talk about my joint work with Aubert where we prove the Local Langlands Conjecture for $G_2$ (explicitly). This uses our earlier results on Hecke algebras attached to Bernstein components of (arbitrary) reductive $p$-adic groups, as well as an expected property on cuspidal support, along with a list of characterizing properties (including stability). In particular, we obtain 'mixed' L-packets containing F-singular supercuspidals and nonsupercuspidals. Our methods are inspired by the Langlands-Shahidi method, Deligne-Lusztig and Lusztig theories etc. If time permits, I will explain how to characterize our correspondence using stability of L-packets, by computing character formulae in terms of (generalized) Green functions ; one key input is a homogeneity result due to Waldspurger and DeBacker. Moreover, I will mention how to adapt our general strategy to construct LLC for other reductive groups, such as $G S p(4), S p(4)$, etc. The latter parts are based on recent joint work with Suzuki.