Graphical and uniform consistency of estimated optimal transport plans

De Johan Segers

Apparaît dans la collection : 2022 - T3 - WS3 - Measure-theoretic Approaches and Optimal Transportation in Statistics

A general theory is provided delivering convergence of maximal cyclically monotone mappings containing the supports of coupling measures of sequences of pairs of possibly random probability measures on Euclidean space. The theory is based on the identification of such a mapping with a closed subset of a Cartesian product of Euclidean spaces and leveraging tools from random set theory. Weak convergence in the appropriate Fell space together with the maximal cyclical monotonicity then automatically yields local uniform convergence of the associated mappings. Viewing such mappings as optimal transport plans between probability measures with respect to the squared Euclidean distance as cost function yields consistency results for notions of multivariate ranks and quantiles based on optimal transport, notably the empirical center-outward distribution and quantile functions.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T3.WS3.006
  • Citer cette vidéo Segers Johan (22/11/2022). Graphical and uniform consistency of estimated optimal transport plans. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T3.WS3.006
  • URL https://dx.doi.org/10.57987/IHP.2022.T3.WS3.006

Bibliographie

  • Johan Segers / Graphical and uniform consistency of estimated optimal transport plans. arXiv:2208.02508

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis