00:00:00 / 00:00:00

Geometry of the sign clusters in the Infinite Ising-weighted triangulation

De Marie Albenque

Apparaît dans la collection : Random Geometry / Géométrie aléatoire

In this talk, I will present recent results, obtained in collaboration with Laurent Ménard, about the geometry of spin clusters in Ising-decorated triangulations, and build on previously work obtained in collaboration with Laurent Ménard and Gilles Schaeffer. In this model, triangulations are sampled together with a spin configuration on their vertices, with a probability biased by their number of monochromatic edges, via a parameter nu. The fact that there exists a combinatorial critical value for this model has been initially established in the physics literature by Kazakov and was rederived by combinatorial methods by Bousquet-Mélou and Schaeffer, and Bouttier, Di Francesco and Guitter. Here, we give geometric evidence of that this model undergoes a phase transition by studying the volume and perimeter of its monochromatic clusters. In particular, we establish that, when nu is critical or subcritical, the cluster of the root is finite almost surely, and is infinite with positive probability for nu supercritical.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19875103
  • Citer cette vidéo Albenque Marie (17/01/2022). Geometry of the sign clusters in the Infinite Ising-weighted triangulation. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19875103
  • URL https://dx.doi.org/10.24350/CIRM.V.19875103

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis