00:00:00 / 00:00:00

Finding complex patterns in trajectory data via geometric set cover

De Anne Driemel

Apparaît dans la collection : Geometry and Computing / Géométrie et Informatique

We consider clustering problems that are fundamental when dealing with trajectory and time series data. The Fréchet distance provides a natural way to measure similarity of curves under continuous reparametrizations. Applied to trajectories and time series, it has proven to be very versatile as it allows local non-linear deformations in time and space. Subtrajectory clustering is a variant of the trajectory clustering problem, where the start and endpoints of trajectory patterns within the collected trajectory data are not known in advance. We study this problem in the form of a set cover problem for a given polygonal curve: find the smallest number k of representative curves such that any point on the input curve is contained in a subcurve that has Fréchet distance at most a given r to a representative curve.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20256103
  • Citer cette vidéo Driemel, Anne (21/10/2024). Finding complex patterns in trajectory data via geometric set cover. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20256103
  • URL https://dx.doi.org/10.24350/CIRM.V.20256103

Bibliographie

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis