00:00:00 / 00:00:00

Apparaît dans la collection : Dispersive Integrable Equations: Pathfinders in Infinite-Dimensional Hamiltonian Systems / Équations Intégrables Dispersives, Pionniers des Systèmes Hamiltoniens en Dimension Infinie

The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and near-field limit of a broad class of solutions of the same equation. In this talk, we will present several recent results on the emergence of these special solutions along with their interesting asymptotic and exact properties. Notably, these solutions exhibit anomalously slow temporaldecay and are connected to the third Painlev´e equation. Finally, we will extend the emergence of rogue waves of infinite order to the first several flows of the AKNS hierarchy — allowing for arbitrarily many simultaneous flows — and report on recent work regarding their space-time asymptotic behavior under a general flow from the hierarchy.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20344003
  • Citer cette vidéo Bilman, Deniz (28/04/2025). Extreme superposition: rogue waves of infinite order. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20344003
  • URL https://dx.doi.org/10.24350/CIRM.V.20344003

Bibliographie

  • BILMAN, Deniz et MILLER, Peter D. General rogue waves of infinite order: Exact properties, asymptotic behavior, and effective numerical computation. arXiv preprint arXiv:2408.05390, 2024. - https://doi.org/10.48550/arXiv.2408.05390

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis