

Locally homogeneous flows and Anosov representations (5/5)
De Daniel Monclair


Harmonic maps in high-dimensional spheres, representations and random matrices (4/4)
De Antoine Song
De Pierre Albin
Apparaît dans la collection : Analysis, geometry and topology of stratified spaces / Analyse, géométrie et topologie des espaces stratifiés
Reidemeister torsion was the first topological invariant that could distinguish between spaces which were homotopy equivalent but not homeomorphic. The Cheeger-Müller theorem established that the Reidemeister torsion of a closed manifold can be computed analytically. I will report on joint work with Frédéric Rochon and David Sher on finding a topological expression for the analytic torsion of a manifold with fibered cusp ends. Examples of these manifolds include most locally symmetric spaces of rank one. We establish our theorem by controlling the behavior of analytic torsion as a space degenerates to form hyperbolic cusp ends.