00:00:00 / 00:00:00

Endomorphisms, train track maps, and fully irreducible monodromies

De Ilya Kapovich

Apparaît dans la collection : Impact of geometric group theory / Impacts de la géométrie des groupes

An endomorphism of a finitely generated free group naturally descends to an injective endomorphism on the stable quotient. We establish a geometric incarnation of this fact : an expanding irreducible train track map inducing an endomorphism of the fundamental group determines an expanding irreducible train track representative of the injective endomorphism of the stable quotient. As an application, we prove that the property of having fully irreducible monodromy for a splitting of a hyperbolic free-by-cyclic group G depends only on the component of the BNS invariant $\sum \left ( G \right )$ containing the associated homomorphism to the integers. In particular, it follows that if G is the mapping torus of an atoroidal fully irreducible automorphism of a free group and if the union of $\sum \left ( G \right ) $ and $\sum \left ( G \right )$ is connected then for every splitting of $G$ as a (f.g. free)-by-(infinite cyclic) group the monodromy is fully irreducible. This talk is based on joint work with Spencer Dowdall and Christopher Leininger.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.18799003
  • Citer cette vidéo Kapovich, Ilya (13/07/2015). Endomorphisms, train track maps, and fully irreducible monodromies. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18799003
  • URL https://dx.doi.org/10.24350/CIRM.V.18799003

Bibliographie

  • Dowdall, S., Kapovich, I., & Leininger, Christopher J. (2015). Endomorphisms, train track maps, and fully irreducible monodromies. <arXiv:1507.03028> - http://xxx.tau.ac.il/abs/1507.03028

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis