

Animal growth in a randomly varying environment with an application to optimization in cattle raising
De Carlos A. Braumann


Stochastic dynamics for adaptation and evolution of microorganisms
De Sylvie Méléard
Apparaît dans la collection : Thematic month on statistics - Week 4: Extremes, copulas and actuarial science / Mois thématique sur les statistiques - Semaine 4 : Extrêmes, copules et actuariat
This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model. This is a joint work with A. Castaner, M.M. Claramunt and S. Loisel.
Keywords: Schur-constant property; survival function; multiple monotonicity; mixed multinomial distribution; insurance risk theory