

Lecture 3: What is the Universal Scaling Limit of Random Interface Growth, and What Does It Tell Us?
De Ivan Corwin


Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics
De Stanislav Smirnov
Apparaît dans la collection : Thematic month on statistics - Week 4: Extremes, copulas and actuarial science / Mois thématique sur les statistiques - Semaine 4 : Extrêmes, copules et actuariat
This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model. This is a joint work with A. Castaner, M.M. Claramunt and S. Loisel.
Keywords: Schur-constant property; survival function; multiple monotonicity; mixed multinomial distribution; insurance risk theory