00:00:00 / 00:00:00

Apparaît dans la collection : 3rd Huawei-IHES Workshop on Mathematical Theories for Information and Communication Technologies

In this talk we present a generic higher order graph-based computational model for automatically inferring and learning data interpretations in divers settings. In particular we discuss the interest and theoretical strengths of such representations, propose efficient inference algorithms for low and higher-order rank models, as well as efficient learning methods towards predictive representations that could be learned efficiently from few examples. The interest of such computational solutions is demonstrated in various challenging domains such as computer vision (graph-matching, image-parsing), computer-aided image-based diagnosis (tumor modeling from partial/incomplete annotations, multi-modal fusion, probabilistic digital anatomy) and computational biology (protein prediction).

Informations sur la vidéo

  • Date de captation 24/04/2017
  • Date de publication 27/04/2017
  • Institut IHES
  • Licence CC BY-NC-ND
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis