00:00:00 / 00:00:00

Bounded remainder sets for rotations on $p$-adic solenoids

De Alan Haynes

Apparaît dans la collection : Jean-Morlet chair: Tiling and recurrence / Chaire Jean-Morlet : Pavages et récurrence

Bounded remainder sets for a dynamical system are sets for which the Birkhoff averages of return times differ from the expected values by at most a constant amount. These sets are rare and important objects which have been studied for over 100 years. In the last few years there have been a number of results which culminated in explicit constructions of bounded remainder sets for toral rotations in any dimension, of all possible allowable volumes. In this talk we are going to explain these results, and then explain how to generalize them to give explicit constructions of bounded remainder sets for rotations in $p$-adic solenoids. Our method of proof will make use of a natural dynamical encoding of patterns in non-Archimedean cut and project sets.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19250803
  • Citer cette vidéo Haynes, Alan (07/12/2017). Bounded remainder sets for rotations on $p$-adic solenoids. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19250803
  • URL https://dx.doi.org/10.24350/CIRM.V.19250803

Bibliographie

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis