00:00:00 / 00:00:00

Apparaît dans la collection : Partial Differential Equations, Analysis and Geometry

Dipping a wire of metal or plastic in soapy water and taking it out is a favorite classroom experiment: typically the soapy water will form a thin film which is attached to the wire. The classical Plateau laws, stated by the Belgian physicist Joseph Plateau in the nineteenth century, assert that, away from the wire, the local geometry of a soap film is described locally by the following list of shapes: a 2-dimensional plane, three halfplanes meeting at a common line with equal angles, and the cone over the 1-dimensional skeleton of a regular tetrahedron. Is there a similar list of possible shapes for the points where the film touches its ``boundary'', namely the wire of the classroom experiment? The classical Plateau laws were translated into a mathematical theorem by Jean Taylor in the seventies: in a nutshell Taylor's theorem rigorously classifies 2-dimensional conical shapes which minimize the area. In this talk I will illustrate a recent joint work with Federico Glaudo, classifying conical shapes which minimize the area and include a boundary line: the corresponding list suggests an analog of Plateau's laws at the boundary of the soap film, which are very much in agreement with both real-life and numerical experiments.

Informations sur la vidéo

  • Date de captation 16/01/2026
  • Date de publication 19/01/2026
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis