

Lecture 3: What is the Universal Scaling Limit of Random Interface Growth, and What Does It Tell Us?
De Ivan Corwin


Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics
De Stanislav Smirnov
Apparaît dans la collection : Stochastic partial differential equations / Equations aux dérivées partielles stochastiques
Consider the following stochastic heat equation, [ \frac{\partial u_t(x)}{\partial t}=-\nu(-\Delta)^{\alpha/2} u_t(x)+\sigma(u_t(x))\dot{F}(t,\,x), \quad t>0, \; x \in \mathbb{R}^d. ] Here $-\nu(-\Delta)^{\alpha/2}$ is the fractional Laplacian with $\nu>0$ and $\alpha \in (0,2]$, $\sigma: \mathbb{R}\rightarrow \mathbb{R}$ is a globally Lipschitz function, and $\dot{F}(t,\,x)$ is a Gaussian noise which is white in time and colored in space. Under some suitable conditions, we will explore the effect of the initial data on the spatial asymptotic properties of the solution. We also prove a strong comparison principle thus filling an important gap in the literature. Joint work with Mohammud Foondun (University of Strathclyde).