00:00:00 / 00:00:00

Area-minimizing Integral Currents: Singularities and Structure

De Camillo de Lellis

Apparaît dans la collection : Advances in Nonlinear Analysis and Nonlinear Waves, a conference in honor of Frank Merle

Area-minimizing integral currents are a natural generalization of area-minimizing oriented surfaces. The concept was pioneered by De Giorgi for hypersurfaces of the Euclidean space, and extended by Federer and Fleming to any codimension and general Riemannian ambients. Celebrated examples of singular $7$-dimensional minimizers in $\mathbb{R}^8$ and of singular $2$-dimensional minimizers in $\mathbb{R}^4$ are known since long. Moreover, a theorem which summarizes the work of several mathematicians in the 60es and 70es (De Giorgi, Fleming, Almgren, Simons, and Federer) and a celebrated work by Almgren in the 80es give dimension bounds for the singular set which match the one of the examples, in codimension 1 and in general codimension respectively. In codimension, higher than 1 a recent result of Liu shows that the singular set can in fact be a fractal of any Hausdorff dimension $\alpha \leq m -2$. On the other hand, it seems likely that it is an $(m -2)$-rectifiable set, i.e. that it can be covered by countably many $C^1$ submanifolds leaving aside a set of zero $m-2$-dimensional Hausdorff measure. This conjecture is the counterpart of a celebrated work of Leon Simon in the nineties for the hypersurface case. In this talk I will report on progress towards its proof, based on recent joint works with Anna Skorobogatova and Paul Minter.

Informations sur la vidéo

  • Date de captation 23/05/2023
  • Date de publication 29/05/2023
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis