00:00:00 / 00:00:00

A moment-based approach for the analysis of the infinitesimal model

De Sepideh Mirrahimi

Apparaît dans la collection : Non-local branching processes / Processus de branchement non local

We provide an asymptotic analysis of a nonlinear integro-differential equation which describes the evolutionary dynamics of a population which reproduces sexually and which is subject to selection and competition. The sexual reproduction is modeled via a nonlinear integral term, known as the 'infinitesimal model'. We consider a regime of small segregational variance, where a parameter in the infinitesimal operator, which measures the deviation between the trait of the offspring and the mean parental trait, is small. We prove that in this regime the phenotypic distribution remains close to a Gaussian profile with a fixed small variance and we characterize the dynamics of the mean phenotypic trait via an ordinary differential equation. We also briefly discuss the extension of the method to the study of steady solutions and their stability.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20249103
  • Citer cette vidéo Mirrahimi, Sepideh (26/09/2024). A moment-based approach for the analysis of the infinitesimal model. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20249103
  • URL https://dx.doi.org/10.24350/CIRM.V.20249103

Bibliographie

  • GUERAND, J., HILLAIRET, M., et MIRRAHIMI, S. A moment-based approach for the analysis of the infinitesimal model in the regime of small variance. arXiv preprint arXiv:2309.09567, 2023. - https://doi.org/10.48550/arXiv.2309.09567

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis