00:00:00 / 00:00:00

A Max-Flow approach to Random Tensor Networks

De Faedi Loulidi

Apparaît dans la collection : Jean Morlet Chair - Research school: Random quantum channels: entanglement and entropies / Chaire Jean Morlet - Ecole: Canaux quantiques aléatoires: Intrication et entropies

We study the entanglement entropy of a random tensor network (RTN) using tools from free probability theory. Random tensor networks are specific probabilistic models for tensors having some particular geometry dictated by a graph (or network) structure. We first introduce our model of RTN, obtained by contracting maximally entangled states (corresponding to the edges of the graph) on the tensor product of Gaussian tensors (corresponding to the vertices of the graph). We study the entanglement spectrum of the resulting random spectrum, along a given bipartition of the local Hilbert spaces. We provide the limiting eigenvalue distribution of the reduced density operator of the RTN state, in the limit of large local dimension. The limit value is described via a maximum flow optimization problem in a new graph corresponding to the geometry of the RTN and the given bipartition. In the case of series-parallel graphs, we provide an explicit formula for the limiting eigenvalue distribution using classical and free multiplicative convolutions. We discuss the physical implications of our results, specifically in terms of finite correction terms to the average entanglement entropy of the RTN.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20200203
  • Citer cette vidéo Loulidi, Faedi (09/07/2024). A Max-Flow approach to Random Tensor Networks. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20200203
  • URL https://dx.doi.org/10.24350/CIRM.V.20200203

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis