Interpolation between random matrices and free operators, and application to Quantum Information Theory
De Félix Parraud
A generic quantum Wielandt's inequality for matrix and Lie algebras
De Angela Capel
Apparaît dans la collection : Jean Morlet Chair - Research school: Random quantum channels: entanglement and entropies / Chaire Jean Morlet - Ecole: Canaux quantiques aléatoires: Intrication et entropies
We study the entanglement entropy of a random tensor network (RTN) using tools from free probability theory. Random tensor networks are specific probabilistic models for tensors having some particular geometry dictated by a graph (or network) structure. We first introduce our model of RTN, obtained by contracting maximally entangled states (corresponding to the edges of the graph) on the tensor product of Gaussian tensors (corresponding to the vertices of the graph). We study the entanglement spectrum of the resulting random spectrum, along a given bipartition of the local Hilbert spaces. We provide the limiting eigenvalue distribution of the reduced density operator of the RTN state, in the limit of large local dimension. The limit value is described via a maximum flow optimization problem in a new graph corresponding to the geometry of the RTN and the given bipartition. In the case of series-parallel graphs, we provide an explicit formula for the limiting eigenvalue distribution using classical and free multiplicative convolutions. We discuss the physical implications of our results, specifically in terms of finite correction terms to the average entanglement entropy of the RTN.