School on Low-Dimensional Geometry and Topology: Discrete and Algorithmic Aspects

Collection School on Low-Dimensional Geometry and Topology: Discrete and Algorithmic Aspects

Organisateur(s)
Date(s) 22/05/2025
00:00:00 / 00:00:00
4 10

Lecture 4 - Algorithms and complexity in the theory of knots and manifolds

De Joel Hass

These lectures will introduce algorithmic procedures to study Knots and 3-dimensional manifolds. Algorithmic questions have been part of the study of manifolds since the time of Dehn, and are finding increasing practicality as algorithms and hardware improve. The study of algorithmic procedures often points the way to interesting directions in the theoretical study of manifolds. We’ll begin by reviewing an easy algorithm to classify 2-manifolds, and then outline Markov's argument for the undecidability of 4-manifold recognition. We’ll then turn to 3-dimensions and and study the Unknotting Problem. Using Haken’s ideas on normal surfaces, we’ll describe algorithms that resolve this and related 3-manifold problems. Normal surfaces turn out to have many similarities to minimal surfaces, and we’ll see how this connection leads to an algorithm to recognize the 3-sphere. Finally we’ll discuss the complexity of topological algorithms, allowing us to connect their difficulty to that of problems in numerous other areas, and to get an idea of which problems are compuationally feasible.

Lecture 4. - Issues of Computational complexity - The classes P, NP, coNP, (and perhaps EXP, PSPACE) - The complexity of unknotting - 3-MANIFOLD KNOT GENUS is NP complete - Some other complexity results - Lower bound questions: Unknotted polygons requiring exponentially many triangles

Informations sur la vidéo

  • Date de captation 21/06/2018
  • Date de publication 06/07/2018
  • Institut IHP
  • Licence CC BY-NC-ND
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis