Interacting particle systems and related fields / Systèmes de particules en interaction et domaines connexes

Collection Interacting particle systems and related fields / Systèmes de particules en interaction et domaines connexes

Organisateur(s) Bernardin, Cédric ; Franco, Tertuliano ; Gabrielli, Davide ; Gonçalves, Patricia ; Sethuraman, Sunder ; Simon, Marielle
Date(s) 22/09/2025 - 26/09/2025
URL associée https://conferences.cirm-math.fr/3335.html
00:00:00 / 00:00:00
1 5

Condensation of zero-range processes

De Johel Beltran

A zero-range process on a finite set of sites S is a type of interacting particle system where particles jump from a site x, occupied by k particles, to a site y at rate g(k)r(x, y). In [2], we studied such processes under the assumptions that S is fixed, g is decreasing and the total number of particle tends to infinity. These conditions give rise to a condensation phenomenon where the majority of particles accumulate at a single site to form a condensate. We showed that if r is reversible, then the position of the condensate evolves as a Markov chain on S in a suitable scaling limit. To reach this result, we first developed a general framework in [1] to investigate a broader question: Under what conditions can identifying states in a Markov process preserve Markovian behavior in the scaling limit of the quotient process? In subsequent works, we refined these tools and applied them to other models (see, for example, [3, 4, 5, 6, 7]). In this talk, I will outline the main ideas behind our approach to these problems and present some open questions that remain to be explored.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20390203
  • Citer cette vidéo Beltran, Johel (22/09/2025). Condensation of zero-range processes. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20390203
  • URL https://dx.doi.org/10.24350/CIRM.V.20390203

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis