On sum sets of sets having small product set
Apparaît également dans la collection : Exposés de recherche
We improve a result of Solymosi on sum-products in $\mathbb{R}$, namely, we prove that max $(|A+A|,|AA|\gg |A|^{4/3+c}$, where $c>0$ is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets $A\subset \mathbb{R}$ with $|AA| \le |A|^{4/3}$. Joint work with I. D. Schkredov.
 
     
	
                 
                 
	
                 
	
                 
	
               
	
               
	
               
	
               
	
               
	
               
	
               
	
         
	
           
                       
	
           
	
           
	
           
	
          ![$k$-sum free sets in $[0,1]$](/media/cache/video_light/uploads/video/2015-09-10_de_Roton-video--19cf70874d3c5af7378c268cab865b06.jpg) 
	
           
	
           
	
           
	
           
	
           
	
           
	
           
      
    