2025 - T2 - Higher rank geometric structures

Collection 2025 - T2 - Higher rank geometric structures

Organisateur(s) Bromberg, Kenneth ; Pozzetti, Maria Beatrice ; Sambarino, Andrès ; Tholozan, Nicolas
Date(s) 14/04/2025 - 11/07/2025
URL associée https://indico.math.cnrs.fr/event/11551/
26 26

We will begin by introducing crucial concepts and definitions in the study of hyperbolic 3-manifolds with finitely generated fundamental groups. One fundamental object of study is the convex core of a hyperbolic 3-manifold (which is the smallest closed, non-empty convex submanifold). When the convex core is compact the manifold is said to be convex cocompact and these are the most easily studied manifolds. When the convex core has finite volume, we say the manifold is geometrically finite.

We will discuss the quasiconformal deformation theory of convex cocompact hyperbolic 3-manifolds which gives rise to an open subset of the character variety of (conjugacy classes) of representations of the fundamental group into PSL(2,C). This open neighborhood is parametrized by conformal data at infinity.

We will then introduce the structure theory of geometrically infinite ends of hyperbolic surface. Here, the theory of simplicial hyperbolic surfaces and/or pleated surfaces will play a crucial role. If time permits we will discuss Thurston's Covering Theorem.

In the last portion of the lecture series, we will introduce and motivate the major accomplishments of the last two decades in Thurston's program to understand infinite volume hyperbolic 3-manifolds. Here, the major results include the proofs of Marden's Tameness Conjecture, Ahlfors' Measure conjecture, Thurston's Ending Lamination Conjecture and the Bers-Sullivan-Thurston Density conjecture.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis