10e Journée Statistique et Informatique pour la Science des Données à Paris-Saclay

Collection 10e Journée Statistique et Informatique pour la Science des Données à Paris-Saclay

Organisateur(s) Evgenii Chzhen, Erwan Le Pennec
Date(s) 01/04/2025 - 01/04/2025
URL associée https://indico.math.cnrs.fr/event/14016/
00:00:00 / 00:00:00
3 6

Slow Convergence of Stochastic Optimization Algorithms Without Derivatives Is Avoidable

De Anne Auger

Many approaches to optimization without derivatives rooted in probability theory are variants of stochastic approximation such as the well-known Kiefer-Wolfowitz method, a finite-difference stochastic approximation (FDSA) algorithm that estimates gradients using finite differences. Such methods are known to converge slowly: in many cases the best possible convergence rate is governed by the Central Limit Theorem leading to a mean square error that vanishes at rate inversely proportional to the number of iterations. In this talk, I will show that those slow convergence rates are not a forgone conclusion for stochastic algorithms without derivatives. I will present a class of adaptive stochastic algorithms originating from the class of Evolution Strategy algorithms, where we can prove asymptotic geometric convergence of the mean square error on classes of functions that include non-convex and non-quasi convex functions. This corresponds to linear convergence in optimization. I will highlight the main differences compared to FDSA algorithms and explain how the analysis of the stability of underlying Markov chain allow enables linear convergence guarantees. I will discuss the connection to the analysis of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), widely regarded as one of the most effective stochastic algorithms for solving complex derivative-free optimization problems.

Informations sur la vidéo

  • Date de captation 01/04/2025
  • Date de publication 10/04/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis