Variational methods and optimization in imaging

Collection Variational methods and optimization in imaging

Organizer(s)
Date(s) 29/03/2024
00:00:00 / 00:00:00
18 22

In the metamorphosis model the space of images is equipped with a Riemannian metric measuring both the cost of transport of image intensities and the variation of them along motion lines. In this talk a recently introduced variational time discretization to compute discrete geodesics and a discrete exponential map will be reviewed. The classical metamorphosis model considers images as square-integrable functions and thus is non-sensitive to image features such as sharp interfaces or fine texture patterns. To resolve this drawback, we treat images not as intensity maps. Instead, we consider two different approaches based on convolutional neural networks methodology. In an image analysis approach, we use deep CNN features to treat local structures and semantic information and morph images via a morphing in feature space. Alternatively, in an image synthesis approach, we take into account learned rotational invariant kernels for sparse image representation and morph images in the space of this representation. This is joint work with Alexander Effland, Thomas Pock, Erich Kobler.

Information about the video

  • Date of recording 07/02/2019
  • Date of publication 12/03/2019
  • Institution IHP
  • Language English
  • Format MP4
  • Venue Institut Henri Poincaré

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback