Mathematical models in ecology and evolution

Collection Mathematical models in ecology and evolution

Organizer(s) Vincent Calvez, Florence Débarre, Jimmy Garnier and Amandine Véber
Date(s) 3/21/22 - 3/25/22
linked URL
00:00:00 / 00:00:00
4 25

Sharp discontinuous traveling waves in a hyperbolic cell-cell repulsion model

By Quentin Griette

This talk concerns a hyperbolic model of cell-cell repulsion with a dynamics in the population of cells. More precisely, we consider a population of cells producing a field (the pressure) which induces a motion of the cells following the opposite of the gradient. The field indicates the local density of population and we assume that cells try to avoid crow-ded areas and prefer locally empty spaces which are far away from the carrying capacity. We analyze the well-posedness property of the associated Cauchy problem on the real line. We start from bounded initial conditions and we consider some invariant properties of the initial conditions such as the continuity, smoothness and monotonicity. We also describe in detail the behavior of the level sets near the propagating boundary of the solution and we find that an asymptotic jump is formed on the solution for a natural class of initial conditions. Finally, we prove the existence of sharp traveling waves for this model, which are particular solutions traveling at a constant speed, and argue that sharp traveling waves are necessarily discontinuous. This analysis is confirmed by numerical simulations of the PDE problem.

Information about the video

  • Date of recording 3/24/22
  • Date of publication 6/24/22
  • Institution IHP
  • Language English
  • Audience Researchers
  • Format MP4

Last related questions on MathOverflow

You have to connect your account with mathoverflow to add question

Ask a question on MathOverflow


  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
  • Get notification updates
    for your favorite subjects
Give feedback